Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves.

نویسندگان

  • Xiaoshu Chen
  • Hyeong-Ryeol Park
  • Matthew Pelton
  • Xianji Piao
  • Nathan C Lindquist
  • Hyungsoon Im
  • Yun Jung Kim
  • Jae Sung Ahn
  • Kwang Jun Ahn
  • Namkyoo Park
  • Dai-Sik Kim
  • Sang-Hyun Oh
چکیده

Squeezing light through nanometre-wide gaps in metals can lead to extreme field enhancements, nonlocal electromagnetic effects and light-induced electron tunnelling. This intriguing regime, however, has not been readily accessible to experimentalists because of the lack of reliable technology to fabricate uniform nanogaps with atomic-scale resolution and high throughput. Here we introduce a new patterning technology based on atomic layer deposition and simple adhesive-tape-based planarization. Using this method, we create vertically oriented gaps in opaque metal films along the entire contour of a millimetre-sized pattern, with gap widths as narrow as 9.9 Å, and pack 150,000 such devices on a 4-inch wafer. Electromagnetic waves pass exclusively through the nanogaps, enabling background-free transmission measurements. We observe resonant transmission of near-infrared waves through 1.1-nm-wide gaps (λ/1,295) and measure an effective refractive index of 17.8. We also observe resonant transmission of millimetre waves through 1.1-nm-wide gaps (λ/4,000,000) and infer an unprecedented field enhancement factor of 25,000.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Squeezing Millimeter Waves through a Single, Nanometer-wide, Centimeter-long Slit

We demonstrate broadband non-resonant squeezing of terahertz (THz) waves through an isolated 2-nm-wide, 2-cm-long slit (aspect ratio of 10(7)), representing a maximum intensity enhancement factor of one million. Unlike resonant nanogap structures, a single, effectively infinitely-long slit passes incident electromagnetic waves with no cutoff, enhances the electric field within the gap with a br...

متن کامل

Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp ti...

متن کامل

High-Throughput Fabrication of Resonant Metamaterials with Ultrasmall Coaxial Apertures via Atomic Layer Lithography.

We combine atomic layer lithography and glancing-angle ion polishing to create wafer-scale metamaterials composed of dense arrays of ultrasmall coaxial nanocavities in gold films. This new fabrication scheme makes it possible to shrink the diameter and increase the packing density of 2 nm-gap coaxial resonators, an extreme subwavelength structure first manufactured via atomic layer lithography,...

متن کامل

Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...

متن کامل

Sub-10 nm feature chromium photomasks for contact lithography patterning of square metal ring arrays

Advances in photolithographic processes have allowed semiconductor industries to manufacture smaller and denser chips. As the feature size of integrated circuits becomes smaller, there has been a growing need for a photomask embedded with ever narrower patterns. However, it is challenging for electron beam lithography to obtain <10 nm linewidths with wafer scale uniformity and a necessary speed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013